网络

教育改变生活

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 438|回复: 0
打印 上一主题 下一主题

【数据结构】二叉树及满二叉树、完全二叉树

[复制链接]

686

主题

693

帖子

3101

积分

版主

Rank: 7Rank: 7Rank: 7

积分
3101
跳转到指定楼层
楼主
发表于 2023-7-11 22:43:06 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
简单地理解,满足以下两个条件的树就是二叉树:
  • 本身是有序树;
  • 树中包含的各个节点的度不能超过 2,即只能是 0、1 或者 2;

例如,图 1a) 就是一棵二叉树,而图 1b) 则不是。


图 1 二叉树示意图

二叉树的性质经过前人的总结,二叉树具有以下几个性质:
  • 二叉树中,第 i 层最多有 2i-1 个结点。
  • 如果二叉树的深度为 K,那么此二叉树最多有 2K-1 个结点。
  • 二叉树中,终端结点数(叶子结点数)为 n0,度为 2 的结点数为 n2,则 n0=n2+1。
性质 3 的计算方法为:对于一个二叉树来说,除了度为 0 的叶子结点和度为 2 的结点,剩下的就是度为 1 的结点(设为 n1),那么总结点 n=n0+n1+n2。
同时,对于每一个结点来说都是由其父结点分支表示的,假设树中分枝数为 B,那么总结点数 n=B+1。而分枝数是可以通过 n1 和 n2 表示的,即 B=n1+2*n2。所以,n 用另外一种方式表示为 n=n1+2*n2+1。
两种方式得到的 n 值组成一个方程组,就可以得出 n0=n2+1。

二叉树还可以继续分类,衍生出满二叉树完全二叉树
满二叉树如果二叉树中除了叶子结点,每个结点的度都为 2,则此二叉树称为满二叉树


图 2 满二叉树示意图


如图 2 所示就是一棵满二叉树。

满二叉树除了满足普通二叉树的性质,还具有以下性质:
  • 满二叉树中第 i 层的节点数为 2n-1 个。
  • 深度为 k 的满二叉树必有 2k-1 个节点 ,叶子数为 2k-1。
  • 满二叉树中不存在度为 1 的节点,每一个分支点中都两棵深度相同的子树,且叶子节点都在最底层。
  • 具有 n 个节点的满二叉树的深度为 log2(n+1)。
完全二叉树如果二叉树中除去最后一层节点为满二叉树,且最后一层的结点依次从左到右分布,则此二叉树被称为完全二叉树


图 3 完全二叉树示意图


如图 3a) 所示是一棵完全二叉树,图 3b) 由于最后一层的节点没有按照从左向右分布,因此只能算作是普通的二叉树。

完全二叉树除了具有普通二叉树的性质,它自身也具有一些独特的性质,比如说,n 个结点的完全二叉树的深度为 ⌊log2n⌋+1。
⌊log2n⌋ 表示取小于 log2n 的最大整数。例如,⌊log24⌋ = 2,而 ⌊log25⌋ 结果也是 2。
对于任意一个完全二叉树来说,如果将含有的结点按照层次从左到右依次标号(如图 3a)),对于任意一个结点 i ,完全二叉树还有以下几个结论成立:
  • 当 i>1 时,父亲结点为结点 [i/2] 。(i=1 时,表示的是根结点,无父亲结点)
  • 如果 2*i>n(总结点的个数) ,则结点 i 肯定没有左孩子(为叶子结点);否则其左孩子是结点 2*i 。
  • 如果 2*i+1>n ,则结点 i 肯定没有右孩子;否则右孩子是结点 2*i+1 。
总结本节介绍了什么是二叉树,以及二叉树的性质,同时还介绍了满二叉树和完全二叉树以及各自所特有的性质,初学者需理解并牢记这些性质,才能更熟练地使用二叉树解决实际问题。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

WEB前端

QQ|手机版|小黑屋|金桨网|助学堂  咨询请联系站长。

GMT+8, 2024-12-23 22:12 , Processed in 0.033725 second(s), 21 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表